

INTERCOMPARISON TESTS WITH HLS AND WPS

Introduction

- Hydrostatic Levelling Systems and Wire Position Systems frequently used in accelerators
- Recent installation of monitoring systems in accelerators
 - Large Hadron Collider (LHC) final focus magnet monitoring (HLS and WPS)
 - Linear Coherent Light Source (LCLS) undulator section (HLS and WPM)
 - Several applications at FNAL (HLS)
- Future accelerators plan to use in monitoring and alignment applications these systems
 - Compact Linear Collider (CLIC)
 - International Linear Collider (ILC)
 - as shown yesterday : KEK / SPring-8
- New sensors were introduced in recent years
 - Budker Institute of Nuclear Physics: capacitive HLS, ultrasound HLS, different types of communication
 - Deutsches Elektronen-Synchrotron: ultrasound HLS
- \rightarrow CLIC prealignment workshop in 2009 at CERN
 - Overview on existing technologies and applications ٠
 - Discuss possibility of intercomparison of the sensors and systems
 - Conclusion on establishing an intercomparison of the sensors presented and institutes that host the tests

11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 13.-17.09.2010

Andreas HERTY · CERN

Future steps

Aim and Objectives (I)

Aim

- compare existing
 - HLS with respect to each other
 - WPS with respect to each other

Objectives

and not

- creating same test criteria, conditions and infrastructure
 - institutes hosting the tests
 - same analysis methods
- Investigation into sensor's performance
 - stability, linearity, repeatability, resolution
 - precision, accuracy

Reference value Probability Accuracy density Value Precision

Future steps

investigate into new technologies, e.g. laser alignment

11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 13.-17.09.2010

Summarv

3

Aim and Objectives (II)

Steps

- creating same test criteria, conditions and infrastructure
 - institutes hosting the tests
 - Same analysis methods
- Investigation into sensor's performance
 - Longterm stability, linearity, repeatability, resolution
 - Precision, accuracy ٠
- Conclusions on the tests carried out in the "as is" configuration
- Modification of setup or in sensor —
 - Data acquisition module, analysis modes
 - Other references, e.g. interferometer, as external reference ٠
- **Final conclusions**

11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 13.-17.09.2010

Andreas HERTY · CERN

Future steps

Sensors

Sensors as they were presented at the CLIC prealignment workshop 2009 at CERN:

Hydrostatic Levelling Sensors

- technology
 - capacitive
 - ultrasound
 - CCD camera / floating device
- Institutes / manufacturers
 - Capacitive FOGALE nanotech (CERN, ESRF, KEK, Soleil, ...)
 - Capacitive BINP SAS and SAS-E (SLAC, FNAL)
 - Capacitive proximity sensors THLS (FNAL)
 - Ultrasound BINP ULSE (SLAC, FNAL)
 - Ultrasound DESY (DESY)
 - CCD camera / floating device (USTC)
 - Capacitive Edi Meier & Partner (PSI)

Wire Position Sensors

- technology
 - capacitive
 - optical
 - radio fequency
- Institutes / manufacturers
 - Capacitive FOGALE nanotech (CERN, ESRF, SLAC, DESY, ...)
 - Optical WPS Open Source Instruments (CERN, DESY)

Future steps

- Radio Frequency WPM (SLAC, DESY)
- Wires
 - carbon-peek, carbon-pes
 - Vectran
 - Gold coated stainless-steel

11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 13.-17.09.2010

Andreas HERTY · CERN

HLS tests at FNAL (I)

FNAL provides as infrastructure:

- System installations with the same sensors (Tevatron HLS, BINP SAS, BINP SAS-E, BINP ultrasound ULSE)
- J. Volk will give more details about ٠ the tests per type of sensor
- One setup with different types of capacitive sensors, including **CERN's Fogale nanotech HLS**

11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 13.-17.09.2010

Andreas HERTY · CERN

Objectives · Steps Sensors · HLS · WPS Installations · FNAL · CERN · SLAC

HLS tests at CERN (I)

CERN provides as infrastructure:

Variety of sensors provided by the different institutes

Plans for the near future:

- Modify temporary installation (to check sensors funtion) to a designed bench
- Provide automatic station to vary water level
- Check calibration of capacitive sensors on calibration bench available at CERN
- Cross check calibrations for capacitive sensors at ESRF
- during a research exchange with \rightarrow USTC for the duration of 3 months

11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 13.-17.09.2010

Andreas HERTY · CERN

8

Summary

WPS tests at SLAC (I)

SLAC provides as infrastructure:

- Granite table in air conditionned calibration laboratory
- Wire displacement unit to displace all wires at the same time by the same amount

11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 13.-17.09.2010

Andreas HERTY · CERN

Future steps

Objectives · Steps Sensors · HLS · WPS Installations · FNAL · CERN · SLAC

WPS tests at SLAC (II) – RESOLUTION

Future steps

11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 1317.09.2010	Andreas HERTY · CERM

Objectives

horizontal

vertical

WPS tests at SLAC (III) – LONG TERM / FACTS

	RF	FOGALE	Open Source
	WPM	nanotech	Instruments
	(1)	(2)	(3)
Resolution horizontal	0.02	0.24	0.99
Resolution vertical	0.02	0.23	0.53
Stability (3weeks)	< 0.20	< 0.75	< 3.00

measurements in µm

- Stability does not take into account parameter changes in the wire
- Resolution different in X and Y for OSI sensor due to configuration of sensor

Future steps

11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 13.-17.09.2010

Andreas HERTY · CERN

Future steps

Hydrostatic Levelling Sensors

- Complete installation of test benches
 - CERN: In collaboration with USTC; three months technical exchange
 - FNAL: Modification of installation for multi-sensor network
- Check calibration of capacitive sensors
 - CERN: on automated calibration bench
 - ESRF: cross check of CERN results on their automated calibration bench
- Long term stability measurements (FNAL)

Wire Position Sensors

- Complete installation of test benches
 - SLAC: install wire displacement unit and HLS sensors to monitor bench
 - CERN: continue validation of optical WPS (Open Source Instruments) ٠

All sensors

- Validate their calibration function
- Compare resolution, precision and accuracy of sensors
- New ideas for comparison of the sensors and analysis of the mesurements

Future steps

Summary

- existing sensors and technologies have been identified at CLIC-PRAL workshop 2009
 - HLS: capacitive, ultrasound, CCD array
 - WPS: capacitive, optical and radio frequency
- Intercomparison has been agreed on
 - to provide sensors
 - to host test installations
- Concepts for tests have been evaluated between the hosting institutes
- Installation of benches took place in summer 2010 at FNAL, SLAC and CERN
- Evaluation of results is starting as shown in this presentation
- Disscussion of the results

Introduction

Making results available for alignment community

 11. International Workshop on Accelerator Alignment · DESY · Hamburg · Germany · 13.-17.09.2010
 Andreas HERTY · CERN

Objectives · Steps Sensors · HLS · WPS Installations · FNAL · CERN · SLAC

Summary

INTERCOMPARISON TESTS WITH HLS AND WPS

