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Adjustment with least 
squares method

Design of a simulated 3-D-network 
Development

A 3D-network with 10 points and three instruments was simulated, 
covering an area of 30 * 30 m² with elevation difference up to 4m.  
Because of the fact, that in SA an instrument stand cannot be a 
measured point, the instruments have the same theoretical 
coordinates as the identical target points but a different name.
For all network simulations the observation data is related to gravity.

Upgrading the 3D-network to 5 instruments

Because of the good corresponding results in this network with three 
instruments, two more instruments (dark blue in figure 2) were 
integrated and the number of observations rises up to 135. These
observations were also distorted, but with new random numbers, and 
again the observations were adjusted. In the figure below the vectors 
of correction are shown:

Adjustment with least squares method
Two software packages – Two results

Calculation

The ‚true‘ observations (distance, azimuth, zenit) for the three 
instruments were calculated. 

These 81 observations were distorted by the described method and 
imported in PANDA and Spatial Analyzer. The true point-coordinates 
were imported as coarse coordinates to locate the instruments in SA 
and for further calculations in the software packages. 

The standard deviations were set to 0.3mgon and 0.05mm+0ppm. 
PANDA runs a so called ‘free adjustment‘ no point is fixed, all points 
together define the datum of the network.

In SA a so called ‚Unified Spatial Metrology Network‘ is calculated, 
rotations around x and y are disabled for all instruments. The adjusted 
coordinates are saved in a new point group and the instruments are 
transformed in SA.

Result

The adjusted coordinates are used to calculate the adjusted 
observations in order to get the corrections and their sum of squares. 

This step is not really necessary in PANDA, but was done to get a 
feeling for the accuracy of calculation.

The sums of squares are shown in the following table:

Sum of 
squares

zenithazimuthdistance

62,7290528,8766426,738847,11357SA-USMN with point

62,7103627,3520729,148636,20966SA –USMN calc.

51,8549427,6208917,935266,29878PANDA calc.

51,9208027,5655018,109206,24610PANDA

Sum of squares

Sum of 
squares

zenithazimuthdistance

90,5707633,6084728,9528728,00942SA –USMN calc.

82,8091634,0126820,5304728,26602PANDA calc.

81,2616033,8702020,3621027,02930PANDA

Sum of 
squares

zenithazimuthdistance

305,0242985,44770122,5021897,07441SA –USMN calc.

257,9402885,2624476,1889796,48888PANDA calc.

260,4133085,4806076,2453098,68740PANDA

Sum of 
squares

zenithazimuthdistance

379,95434122,49341122,82293134,63800SA –USMN calc.

316,80271104,8291594,89817117,07540PANDA calc.

317,10130104,6859094,58250117,83290PANDA

Design of a 3 -D Linear-Accelerator-Network
Network configuration

Additionally, a second network has been used for comparison.
It has been simulated as a linear accelerator network, which is similar 
to the ones commonly used at DESY.

Four points, left and right of the theoretical beamline, two of them on 
the bottom, the other on the ceiling, build a ‚ring‘. Every ten meters 
another ring is installed. Overall there are nine rings. The instrument 
is placed in the middle of two rings and observes usually two rings 
forward and two rings backward. 

In this  example seven instruments are used, so that the last ring is 
measured without redundancy. 

Calculation

The ‚true‘ observations (distance, azimuth, zenith) for the seven 
instruments and 36 measured points were calculated. The 384
observations were distorted and imported in PANDA and Spatial 
Analyzer. 

PANDA adjusted the 384 observations and didn‘t show corrections for 
the 12 observations to the four points of the last ring, which are only 
observed once (as said before).

SA adjusted only the 372 observations to the points which are at least 
observed twice, but surprisingly the 12 unchecked observations also 
changed. At the moment there is no explanation for this behaviour.

The result of this linear network is again surprising: the sum of 
squares for azimuths of the Spatial Analyzer solution doesn‘t really 
change, but now there are also differences to the PANDA adjustment 
in the other sums of squares, which didn‘t exist in the other networks.

Redundancy

To answer the question whether the difference at the end of the 
network can be explained with the unused observations, the network 
was extended with two additional instruments so that now the last ring 
is also redundant.

Now nine instruments are used, the number of (new) distorted 
observations is 468, while the number of target points is still 36.

While for the PANDA solution the distribution of correction looks
relatively consistent, for the SA result a lateral movement of the
adjusted coordinates is pronounced. A short look at the sum of 
squares for azimuths confirms that the SA-solution is 1.5 times 
higher than the PANDA result for the azimuths.

In this network the individual sum of squares for distance and 
Zenith are equal for both results within the limits of accuracy of 
calculation.

However, the total sum of squares is significantly larger for SA than
for PANDA.

Measurement setup

Last but not least: It is particularly remarkable that the SA vectors of 
correction grow from top to bottom or from instrument 1 to instrument 
9 whereas the size of the PANDA vectors of correction is consistent in 
this net.

So, does the solution in SA depend on the internal order of the 
instruments?
There are two possibilities to check this idea. 

First one is to copy the instruments in reverse order in a new 
collection and adjust the network again. There is no difference in the 
results for this approach.

The second possibility is to create an new collection and read in the 
instruments and point groups (measurements) in reverse order. The 
adjustment of this data shows a mirrored result for the vectors of 
correction. 

That means that the timestamp of the measurements is a critical 
information for the adjustment of Spatial Analyzer.

Adjustment

The output of PANDA includes the adjusted coordinates and 
observations, also the correction of the observations and the sum of 
squares of the corrections. 

SA represents the adjusted coordinates of the measured points in a 
point group, the coordinates of the instruments are shown in the
instrument properties. 

The differences to the true coordinates are shown in figure 3.

Result

Vectors of correction: Magnification 100000 PANDA black  SA red

Figure 4

Vectors of correction: Magnification 100000 PANDA black  SA red

Figure 5

Vectors of correction: Magnification 100000 PANDA black  SA red

Figure 7

Vectors of correction: Magnification 100000 PANDA black  SA red

Figure 8

Vectors of correction: Magnification 100000 SA red

Figure 9

As shown in the table for this network a ‘Unified Spatial Metrology 
Network with point group’ was calculated,too. The orignal coordinates 
were allowed to move. 

There are little variances between USMN with and without point 
groups in the individual sum of squares, but finally the total sum of 
squares doesn‘t change.

Figure 3

Table 1

Table 2

Table 3

Table 4

Two more instrument stands and 54 more observations have of 
course an effect on the individual sum of squares for distance and 
zenith, but not really for the azimuth. In the azimuth sum of squares
of Spatial Analyzer there is even a small reduction. 

Summary

Surprisingly the sum of squares of Spatial Analyzer and PANDA are 
very similar concerning  the distance and zenith angle, but for the 
azimuth Spatial Analyzer gives a much larger value than PANDA.

Therefore, from the analytical point of view the Spatial Analyzer result
is suboptimal.

A method for the comparison of different network adjustment packages
has been shown. So far only PANDA and SA have been evaluated with
a limited set of simulated networks.
While both packages claim to use something like , which is
the least square method developed by Gauss, there are siginificant
differences in the results. 

With the comparison of the sum of squares obviously the rightness of 
a solution can not be proven. So at the moment the minimal sum of 
squares has to be considered the right one. In all estimated networks
the weighted sum of squares of the residuals was larger for the SA 
solution than for PANDA.

Especially the lateral movement of points from start to end is important
for the acclerator community. This behaviour ist dependent on the
internal order of observations and maybe caused by a sequential
estimation of network points in SA. 
It is planned to analyse more network configurations in the future. 
People from other laboratories with different software packages are
welcome to contribute.

min→Pvv T

Conclusion

Several software packages use the “least squares method” for 
adjustment of observations to calculate the coordinates. The 
mathematical background of this method is to minimize the weighted 
sum of squares,                   consequently the evaluation of this sum 
is a possibility to compare the results of different programs and their 
algorithms.

The Gaussian variables   were randomized with the Box-Muller-
Method. Such numbers can be numerically sampled from two uniform 
([0, 1]) random numbers u1 and u2 through the formula

Based on a simulated network the true coordinates are known.

The true observations are calculated from the true coordinates. 

The standard deviation of azimuth and zenith is set to         0.3mgon,  
the standard deviation of distance is set to       0.05mm+0ppm.

The observation vector consists of the true observations and a 
random error vector , which is scaled with the standard deviation of 
each obervation.   

Now the generated observations can be adjusted considering the
least squares method

The adjusted observations     are the sum of the observations   
and the correction .

In ideal case the correction should be equal to the random error

Normal Distribution 
3000 numbers randomized with Box-Muller-method
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Network design w ith 3 and 5 instruments
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Linear network design with 7 and 9 instruments
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