

AN OBJECT ORIENTED APPROACH TO PROCESSING ACCELERATOR
ALIGNMENT MEASUREMENTS

M. Jones, CERN, Geneva, Switzerland

Abstract
Over a long period of time the least squares

compensation program at CERN, LGC, has been
gradually re-written in C++. Part of the program has been
integrated into a software library, which is also used in a
number of other programs, with the functionality specific
to LGC built on top. The geodetic transformations used
within the program have been updated and a sparse matrix
representation added for the least squares matrix, this
latter change contributing, in part, to a significant increase
in the calculation speed.

A new version is now nearing completion, with a
necessary change to the input data format allowing for the
inclusion of measurements from a non-levelled theodolite
or laser tracker. The observation equations used within
the program have also been revised where appropriate, to
increase the programs flexibility, and these new
formulations have added unknown lines and planes to the
parameters to be determined. Some of these new
observation equations will be presented, together with the
anticipated advantages they provide.

INTRODUCTION
The LGC program was originally written in Fortran77

in the 1980’s, at the time of the construction of LEP. It
was designed to handle all the different measurement
types that were used by the Survey Group at CERN, and
to process the data in a 3D coordinate system either
locally defined, or, more rigorously, taking into account
the horizontal and vertical geodetic reference surfaces that
were established during the same period for the CERN
site. The program passed through the hands of numerous
“stagiaires” (trainee surveyors) over the next 10-15 years
and various new observations and analysis tools were
introduced.

In view of the tendency at CERN, and elsewhere, to
migrate from software written in F77 to other more
modern languages, and taking into account the anticipated
requirement to add further functionality, analysis tools
and observation types, the last 10 years have been spent,
when time allowed, translating and developing this
program in C++. The program went through several
revisions, and again passed through the hands of
numerous students and fellows, but the translation is now
complete.

In fact we have now found time to start on new
developments in the program, inspired in part by other
software which had been developed by the experiment
collaborations, such as Simulgeo [1] and ARAMyS [2],
and also programs such as LTOP (Swiss Federal Office of
Topography) and TRINET+ (heig-vd) which benefit from
a more detailed stochastic model than that found in LGC.

With an initial request to process measurements from
laser trackers, or off level total stations, a proposal to
change the data file format was picked up again, and
changes were made to simultaneously allow an increased
flexibility in the presentation of certain measurements.
This then led inevitably to the introduction of some
simple 3D shapes, and the requirement to determine their
parameters, in addition to the set of unknown point
coordinates. Another new version of LGC is now nearing
completion, and the door has been opened towards further
new developments.

CHANGES IN THE C++ VERSION
The primary goal in re-writing LGC was to make it

easier to modify and add to the program with future
developments. An analysis of the FORTRAN version of
the program using Logiscope had confirmed that the
majority of the routines were relatively easy to
understand, and could therefore be modified and tested
efficiently. Unfortunately one routine that was flagged as
needing to be changed was the MAIN routine. This
routine included many jump statements into and out of
loops and at 3000 lines represented nearly a third of the
code, see Fig. 1. The author, having previously been one
of the trainee surveyors whose hands this program had
passed through, also had first hand knowledge of the
difficulty of assuring that no unexpected results were
introduced by a seemingly innocuous change in the code.

Figure 1: Control Graph of the LGC F77 Main routine

A lot of the new code for the LHC era at CERN was
being written in C++, and as the future of FORTRAN was
uncertain it was decided to re-write LGC in C++.

Reference Frames and Transformations
Whilst re-creating a CERN reference frame

transformation program CSGEO, it had been shown that

nd reference frames, and this was
no

w

rms the basis of a
eyLib.

Va

rvation equations however
re

 having to teach them the
fu

ave also been included for the least
sq

and LDLT decompositions and solving methods are
available.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

120040
1399080
057803
007870
300093
0200010

A

Value 10 3 3 9 7 8 4 8 8…9 2 3 13 ‐1
Row Index 1 2 4 2 3 5 6 3 4…5 6 2 5 6

the transformation algorithms developed for the LEP era
were not as rigorous as they could be and could lead to
small errors. Although not significant for the day to day
survey and alignment work it was decided to update the
transformation algorithms, and extend the list of reference
frames available, in order to maintain the highest possible
precision. This required the introduction of local
astronomical reference frames into the LGC processing
algorithm. The change to C++, and object oriented code,
provided certain advantages in the representation of
objects such as points a

w fully exploited.
For the purposes of the transformation algorithm the

reference frames are represented as nodes of a graph and
the transformations as links between the nodes. The
sequence of transformations to pass between any pair of
reference frames is determined at run time by simply
finding the shortest path between them on the graph [3].
The spatial position of a given point is then changed as it
is transformed from one reference frame to another using
the “State” design pattern [4]. This same pattern is used in
the transformation of the coordinates of a position vector

hen it is changed from one coordinate system to another.
A selection of these reference frames and

transformations were also used in a number of different
applications, including Geode - the SURVEY database
GUI application - and some field software. To avoid
duplication of code, this whole section of code was
extracted from LGC and now fo
software library called Surv

riables and Objects
Although 3D objects were not included in the initial

translation of the program, they were already foreseen and
offset measurements were identified as being the distance
to a line or a plane. The obse

mained mostly unchanged.
The program itself went through two or three major

revisions with large parts of the code being completely
restructured as our knowledge of object-oriented
programming improved and as we identified the weak
points in our new code. As the completion of the re-write
approached, some more minor changes were made which
had a direct impact on improving the software
performance. (This shows the advantage of having
computer programming students to work on the software,
despite the disadvantage of

ndamentals of surveying.)
Hash tables have been included throughout the

application, dramatically increasing the execution speed
by means of more rapid searches through the data sets.
Sparse matrices h

uares matrices.
Initial tests were made using existing sparse matrix

libraries (such as TAUCS), but as we also looked towards
including quadruple precision (see below) it was decided
to write our own implementation. The sparse matrix is
based around a compressed column storage algorithm
which reduces the memory storage requirements and

provides faster operations; see an example in Fig. 2.
Matrix multiplication has been implemented, with special
cases where diagonal matrices are involved or only the
lower triangular part of the result matrix is required, e.g.
for symmetric matrices. A special algorithm has also been
implemented for the simultaneous multiplication of three
matrices. For the least squares computations Cholesky

Figure 2: Example of Compressed Column Storage

At this stage quite a significant number of changes had
been made to the program. Versions of the C++
application had been produced along the way as we
moved towards implementing the full functionality, and
more, of the FORTRAN program. Testing had been
carried out at each stage principally by running a number
of test files through previous versions of the software and
the newly baptised version. This initially posed a problem
since the transformation algorithm, a fundamental part of
the data processing, had been changed between the
FORTRAN version and the C++ version [5]. Small
discrepancies existed between the output results, and
considerable time was spent analysing the differences
case by case to show that it was only due to this change in
methodology and not due to any errors in the new
algorithms themselves.

With a new representation for the least squares
matrices, and all the other changes, small discrepancies
between the intermediate results from least squares matrix
manipulations between the new and the previous versions
were once again evident, even though the differences in
the results from the two computations were negligible.
Whilst we could not rule out an error in the new code,
passing through the code and testing did not reveal
anything. We began to wonder of there wasn’t another
possibility. With the extended output precision of the
software, the coordinates of points across the CERN site
now ranged up to 10 km with a precision of 0.1
micrometres or 12 significant figures. This could start to
approach the limits of the precision maintainable with
double precision real numbers in calculation intensive
software, which least squares algorithms processing of
large data sets certainly are! It was possible that the
change of matrix representation and associated algorithms
led us to a different solution due to a different set of
rounding errors.

Quadruple precision was the obvious answer, but a
search of the internet revealed that this was only really a

Column Pointer 1 4 8 10 13 17 20

possibility using software emulation. Ironically quad
precision was already a reality in some FORTRAN
compilers. One of the best options was an unpublished
implementation in the Intel compiler. Fortunately CERN
had access to this compiler, so the modifications were
made to the code to enable us to switch between double
precision and quadruple precision at compile time. This
change probably slows the processing time by a factor of
2-4 times but this was outweighed by the gains provided
by the other changes described above. In the end this did
not provide any significant improvement in the
discrepancies between the results, but as already
mentioned the differences between the final results from
the computations were negligible. In any case we
shouldn’t need to worry about calculation precision for
some time!

Application Output Data Formats
A number of changes have also been made to the

format of the data output from LGC. The first change was
implemented to improve the flexibility in the control of
the precision of the output results data.

A number of keywords existed in the FORTRAN
version to create output for specific applications such as
the early CLIC studies. However these did not always
produce a consistent level of precision throughout the
entire output data file. A new keyword has now been
implemented to allow the results to be output with a
precision which can be set to lie anywhere between
metres to tenths of a micrometre. This is sufficient for
current projects and installations, but can be easily
extended in the future if required.

Typically the output files are presented as text files with
the data in a tabulated format. This can now also be
changed to give comma separated variable (CSV) format,
for easy import into Excel for example.

Figure 3: PCTOPO interface

The current user interface for LGC is provided either
by Geode, or a utility providing access to a number of our
applications, including LGC, called PCTOPO, see Fig. 3.
At this time a student project was also launched to create
a GUI front end for LGC with an emphasis on the
graphical presentation of the network of measurements
for a given field operation, see Fig. 4. The work was
never finalised, but has provided a basis for future work
in this direction, and has shown the areas where more
work is still required, such as in the presentation of the

long narrow measurement networks found in accelerator
tunnels.

Figure 4: LGC GUI 3D Network View

NEW FILE FORMAT
With a new C++ version of LGC now available with an

implementation of the full functionality available from the
original FORTRAN code, plus some new functionality
and the bugs in the original code fixed, it was time to look
towards extending the program further.

A list of areas where LGC could be extended had
existed from the time when the project to re-write it first
began. A review of this list identified the introduction of
LTD measurements (or any equivalent instrument such as
a non-levelled theodolite) as the first priority. Work had
already begun on the insertion of LTD measurements into
the SURVEY database, and the obvious next step was to
be able to export them to an LGC input file where they
could be processed simultaneously with any other
measurements.

The input of the LTD data was obviously going to
require a modification in the input data format for those
measurements. Keeping each different type of
measurement separate, e.g. horizontal angle, zenith
distance, and spatial distance, required a strong link to be
created between the corresponding measurements. Rather
than taking the current input format, and forcing a
solution for the LTD measurements to conform to it as
best as possible, it was decided to rework the whole input
file format. In reality this meant the measurement data
input format, in the new input file format the calculation
options and the point data input remain largely
unchanged.

New sections have now been added to declare
instruments and targets, and these sections allow for a
much more detailed stochastic model such as those found
in other applications. Standard errors for instrument, or
target, height or centring can now be introduced, and also
for other values specific to a given measurement. As
before the defaults values are applied throughout the file
if no specific values are specified for a given round of
measurements or individual measurement.

Measurements made from a given instrument station
are now grouped together. For a total station, theodolite,

A way to avoid the problem is to introduce a vertical
plane as an unknown object, see the simplified Figure 6.

Th

meas n in
Eq

or the laser tracker the measurements are then grouped by
a given horizontal orientation, or V0, and then by round
of measurements. This allows for a much more direct
control of links between the measurements that were
made at the same time. It is expected that this will lead to
a better appreciation of the correlations between related
measurements during the analysis of the results.

REVISED OBSERVATION EQUATIONS
The changes to the input format of the LGC data file

also allowed for more far reaching changes to a number
of measurements, principally the offset measurements,
and the introduction of 3D objects, other than spatial
points, into the list of unknowns to be determined.

If we consider the example of the horizontal offsets,
that are used extensively in most accelerator planimetric
survey and alignment operations at CERN. As the data is
presented, these measurements have always been
characterised by two spatial points (called anchor points),
a measured point, and the measured offset distance (the
horizontal distance between the measured point and the
straight line joining the two anchor points), see Fig. 5. All
three of these points must be included in the calculation.

Figure 5: Horizontal Offset Measurement Defined using
Points

In reality, for horizontal offsets, the instrument is
actually placed on a point and the distance to a vertical
plane, characterised by a stretched wire, is measured. It is
also becoming more frequent for the wire to be stretched
between to two tripods whose position is not important. In
this case the offset from the two anchor points is also
measured. Prior to the inclusion of these measurements in
an LGC data file, each measurement linked to a given
stretched wire installation are reduced to the straight line
passing through the two anchor points.

The problem with this pre-processing is that if there is
an error in the measurement to one of the anchor points,
all the reduced measurements relying on that anchor point
measurement will be wrong. It is then necessary to return
to the original measurements and identify a different
anchor point.

e measurements to this plane from the points are all
processed in the least squares adjustment, and the
parameters of the plane are included in the list of
unknown parameters. There will obviously be a change in
the observation equations depending on which
representation is chosen.

Measured distance / offset

Vertical (e.g. Z-axis)

Vertical Plane

Measurement Point

Figure 6: Horizontal Offset to a Vertical Plane

In ffset vector form the observation equation for the o
urement defined in terms of three points is give

. 1.

ܵଶ ൌ ሺܺெ െ ஺ܺଵሻ · ሺܺெ െ ஺ܺଵሻ െ ቆ
ሺܺெ െ ஺ܺଵሻ · ሺ ஺ܺଶ െ ஺ܺଵሻ

| ஺ܺଶ െ ஺ܺଵ|
ቇ

ଶ

(1)

where,
 = offset distance

= 2D coordinates of the measurement point
, of the anchor points

ertical
plane Eq. 2) is much simpler, has the advantage of
us

 (2)

where,
ܵ =

= e measurement point
ector normal to the plane

in Equation 2 is
th istance to the origin, it is also better to introduce a
fix point much closer to the area being measured (see

ܵ
ܺ

= 2D coordinates
ெ
஺ܺଵ ஺ܺଶ

The observation equation for the offset to a v

(see
ing the actual field measurements, and does not require

and any specific pre-processing of the measurements.
This means that measurements can be removed from the
calculation without any problem. The disadvantage is that
it does increase the number of unknowns in the
adjustment. With the computing power available from
desktop computers today, the increase in the number of
unknowns should not be a major drawback.

 ܵ ൌ ܺெ · ො݊ ൅ ݀

 offset distance
 coordinates of thܺ

= horizontal unit v
ெ
ො݊
 = the plane distance parameter ݀

Since the plane's distance parameter
 d
ed

e

Measured distance / offset

Anchor Point
Vertical (e.g. Z-axis)

Vertical Plane

Anchor Point

Measurement Point

Eq

where in a
ܺ଴ =

 = eter, from ܺ଴

th ment to
ad ns uch as a
constraint to ensure that the plane vector re a unit
ve

ne in 3D space has been
in

uld have been expected, and
re

ent a
new version of LG ow be produced
which includes a included in the
ori

new
in

is has pushed
us

of C++ was made primarily taking
in

pr

oubt the initial choice of C++ as the
pr

 all for their
he

tion and
reconstruction optogeometrical
systems”, CER -079, CERN

[4] “Design Patterns: Elements of

. 3). This means that a small rotation of the plane
should not induce significant changes in this parameter
and will help the convergence of the least squares
process.

ܵ ൌ ሺܺெ െ ܺ଴ሻ · ො݊ ൅ ݀଴ (3)

ddition,
 coordinates of an arbitrary fixed point
 the plane distance param݀଴

o er less obvious consequence is the require

An
d co traints to the least squares adjustment, s

mains
ctor. Again, this is not a major problem from a

computational power point of view, but does complicate
the least squares formulation.

This same philosophy has been applied to the offset to a
spatial line and the offset to a vertical line measurements.
Intuitively in each case a li

troduced as an unknown.
Further work is still needed to refine the processing of

these new observation equations. The solutions are
currently less stable than wo

quire further investigation to understand these
instabilities and why they were less apparent with the
original observation equations. Further work is also need
to refine the decomposition and least squares solution
methods for these more complicated formulations.

CONCLUSIONS
Following many years of intermittent developm

C written in C++ has n
ll of the functionality

ginal F77. This new version also includes several
improvements such as: a revised algorithm for the
processing the observations which is base around a more
rigorous process for transforming the point coordinates
between the necessary reference frames; and a sparse
matrix model exploited in the least squares solution.

This re-writing of LGC has also resulted in the creation
of a software library which we have called SurveyLib,
and which is also now the basis for a couple of other

-house applications. We are also hopeful that the
structure of this new application will enable us to
introduce new concepts and developments into the code
much more easily than in the F77 program.

Further developments have now been rapidly applied to
the new application in order to permit the integration of
LTD measurements into an adjustment. Th

 towards a change in the format of the input file, and
encouraged us to simultaneously make a change in a
number of observation equations. This in turn led to the
introduction of a couple of simple 3D objects whose
parameters are included in the list of unknown parameters
to be determined. These changes have required us to
evolve the algorithm of the least squares solution. When
time and resources are available we hope to conclude on

the best way to manage these new concepts, and finalise
this latest version too.

When we began this project the choice of programming
language was one of the first questions that were
addressed. The choice

to account: the current and future support available
from the CERN IT Department; and the ability of the
finished application to process large data sets and the
corresponding least squares matrices as fast as possible.

Ten years ago it was difficult to find surveyors who had
experience in writing C++ (or even other object-oriented
languages such as Java). For those with an interest in

ogramming, and a mathematical background, training
courses were periodically available at CERN, but not
always when they were needed. This then meant taking
time to teach them the language within the survey group.
In either case the surveyor would not be productive for
maybe six months, and this was only worthwhile if they
would be at CERN for more than a year. More recently
we have been working with computer programming
students with a strong mathematical background, and
found teaching them the fundamentals of surveying or
least squares a more productive process. Finally we are
now seeing some surveying students with a good
knowledge of C++.

There have been times when the difficulties of finding
people to work on the project, for the reasons outlined
above, have put in d

ogramming language. Visual Basic seems to be the
language that most surveyors know, but it would be
difficult to imagine such a processing intensive
application written in this language. A similar problem
exists with Java, which may have fewer hidden dangers
than C++, but is still perhaps 2 – 10 times slower. C has
less functionality, and FORTRAN now has very little
support at CERN. Taking all these factors into account
the author still believes that C++ was the correct choice.
The appearance of surveyors with programming skills in
this language would appear to vindicate that.

This development has only been possible with the
contribution of numerous people (students, fellows and
staff) and the author would like to thank them

lp in reaching the final goal. It was not always easy and
we all had new things to learn along the way.

REFERENCES
[1] L. Brunel, “SIMULGEO: Simula

 software for
N-CMS-NOTE-1998

[2] C. Amelung, “ARAMyS Manual” Atlas Muon Note,
Draft, 2006; http://amelung.web.cern.ch/amelung/
aramys-manual.pdf

[3] U. Breymann, “Designing Components with the C++
STL”, Harlow: Addison-Wesley, 1998.
E. Gamma et al.,
Reusable Object-Oriented Software”, Boston, MA:
Addison-Wesley, 1995.

CERN, 2003 : EDMS Doc

[5] E. Claret, “Ecarts de Coordonnées entre LGC et
LGC++ pour les Calculs Géodésiques”, Activity
Report, EST-SU/ACG,
No. 427072.

	AN OBJECT ORIENTED APPROACH TO PROCESSING ACCELERATOR ALIGNMENT MEASUREMENTS
	INTRODUCTION
	CHANGES IN THE C++ VERSION
	Reference Frames and Transformations
	Variables and Objects
	Application Output Data Formats

	NEW FILE FORMAT
	REVISED OBSERVATION EQUATIONS
	CONCLUSIONS
	REFERENCES

