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Abstract 
Over a long period of time the least squares 

compensation program at CERN, LGC, has been 
gradually re-written in C++. Part of the program has been 
integrated into a software library, which is also used in a 
number of other programs, with the functionality specific 
to LGC built on top. The geodetic transformations used 
within the program have been updated and a sparse matrix 
representation added for the least squares matrix, this 
latter change contributing, in part, to a significant increase 
in the calculation speed.  

A new version is now nearing completion, with a 
necessary change to the input data format allowing for the 
inclusion of measurements from a non-levelled theodolite 
or laser tracker. The observation equations used within 
the program have also been revised where appropriate, to 
increase the programs flexibility, and these new 
formulations have added unknown lines and planes to the 
parameters to be determined. Some of these new 
observation equations will be presented, together with the 
anticipated advantages they provide. 

INTRODUCTION 
The LGC program was originally written in Fortran77 

in the 1980’s, at the time of the construction of LEP. It 
was designed to handle all the different measurement 
types that were used by the Survey Group at CERN, and 
to process the data in a 3D coordinate system either 
locally defined, or, more rigorously, taking into account 
the horizontal and vertical geodetic reference surfaces that 
were established during the same period for the CERN 
site. The program passed through the hands of numerous 
“stagiaires” (trainee surveyors) over the next 10-15 years 
and various new observations and analysis tools were 
introduced.  

In view of the tendency at CERN, and elsewhere, to 
migrate from software written in F77 to other more 
modern languages, and taking into account the anticipated 
requirement to add further functionality, analysis tools 
and observation types, the last 10 years have been spent, 
when time allowed, translating and developing this 
program in C++. The program went through several 
revisions, and again passed through the hands of 
numerous students and fellows, but the translation is now 
complete.  

In fact we have now found time to start on new 
developments in the program, inspired in part by other 
software which had been developed by the experiment 
collaborations, such as Simulgeo [1] and ARAMyS [2], 
and also programs such as LTOP (Swiss Federal Office of 
Topography) and TRINET+ (heig-vd) which benefit from 
a more detailed stochastic model than that found in LGC. 

With an initial request to process measurements from 
laser trackers, or off level total stations, a proposal to 
change the data file format was picked up again, and 
changes were made to simultaneously allow an increased 
flexibility in the presentation of certain measurements. 
This then led inevitably to the introduction of some 
simple 3D shapes, and the requirement to determine their 
parameters, in addition to the set of unknown point 
coordinates. Another new version of LGC is now nearing 
completion, and the door has been opened towards further 
new developments. 

CHANGES IN THE C++ VERSION 
The primary goal in re-writing LGC was to make it 

easier to modify and add to the program with future 
developments. An analysis of the FORTRAN version of 
the program using Logiscope had confirmed that the 
majority of the routines were relatively easy to 
understand, and could therefore be modified and tested 
efficiently. Unfortunately one routine that was flagged as 
needing to be changed was the MAIN routine. This 
routine included many jump statements into and out of 
loops and at 3000 lines represented nearly a third of the 
code, see Fig. 1. The author, having previously been one 
of the trainee surveyors whose hands this program had 
passed through, also had first hand knowledge of the 
difficulty of assuring that no unexpected results were 
introduced by a seemingly innocuous change in the code. 

Figure 1: Control Graph of the LGC F77 Main routine 

A lot of the new code for the LHC era at CERN was 
being written in C++, and as the future of FORTRAN was 
uncertain it was decided to re-write LGC in C++. 

Reference Frames and Transformations 
Whilst re-creating a CERN reference frame 

transformation program CSGEO, it had been shown that 
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the transformation algorithms developed for the LEP era 
were not as rigorous as they could be and could lead to 
small errors. Although not significant for the day to day 
survey and alignment work it was decided to update the 
transformation algorithms, and extend the list of reference 
frames available, in order to maintain the highest possible 
precision. This required the introduction of local 
astronomical reference frames into the LGC processing 
algorithm. The change to C++, and object oriented code, 
provided certain advantages in the representation of 
objects such as points a

w fully exploited.  
For the purposes of the transformation algorithm the 

reference frames are represented as nodes of a graph and 
the transformations as links between the nodes. The 
sequence of transformations to pass between any pair of 
reference frames is determined at run time by simply 
finding the shortest path between them on the graph [3]. 
The spatial position of a given point is then changed as it 
is transformed from one reference frame to another using 
the “State” design pattern [4]. This same pattern is used in 
the transformation of the coordinates of a position vector 

hen it is changed from one coordinate system to another.   
A selection of these reference frames and 

transformations were also used in a number of different 
applications, including Geode - the SURVEY database 
GUI application - and some field software. To avoid 
duplication of code, this whole section of code was 
extracted from LGC and now fo
software library called Surv

riables and Objects 
Although 3D objects were not included in the initial 

translation of the program, they were already foreseen and 
offset measurements were identified as being the distance 
to a line or a plane. The obse

mained mostly unchanged.  
The program itself went through two or three major 

revisions with large parts of the code being completely 
restructured as our knowledge of object-oriented 
programming improved and as we identified the weak 
points in our new code. As the completion of the re-write 
approached, some more minor changes were made which 
had a direct impact on improving the software 
performance. (This shows the advantage of having 
computer programming students to work on the software, 
despite the disadvantage of

ndamentals of surveying.) 
Hash tables have been included throughout the 

application, dramatically increasing the execution speed 
by means of more rapid searches through the data sets. 
Sparse matrices h

uares matrices. 
Initial tests were made using existing sparse matrix 

libraries (such as TAUCS), but as we also looked towards 
including quadruple precision (see below) it was decided 
to write our own implementation. The sparse matrix is 
based around a compressed column storage algorithm 
which reduces the memory storage requirements and 

provides faster operations; see an example in Fig. 2. 
Matrix multiplication has been implemented, with special 
cases where diagonal matrices are involved or only the 
lower triangular part of the result matrix is required, e.g. 
for symmetric matrices. A special algorithm has also been 
implemented for the simultaneous multiplication of three 
matrices. For the least squares computations Cholesky 

 

Figure 2: Example of Compressed Column Storage 

At this stage quite a significant number of changes had 
been made to the program. Versions of the C++ 
application had been produced along the way as we 
moved towards implementing the full functionality, and 
more, of the FORTRAN program. Testing had been 
carried out at each stage principally by running a number 
of test files through previous versions of the software and 
the newly baptised version. This initially posed a problem 
since the transformation algorithm, a fundamental part of 
the data processing, had been changed between the 
FORTRAN version and the C++ version [5]. Small 
discrepancies existed between the output results, and 
considerable time was spent analysing the differences 
case by case to show that it was only due to this change in 
methodology and not due to any errors in the new 
algorithms themselves.  

With a new representation for the least squares 
matrices, and all the other changes, small discrepancies 
between the intermediate results from least squares matrix 
manipulations between the new and the previous versions 
were once again evident, even though the differences in 
the results from the two computations were negligible. 
Whilst we could not rule out an error in the new code, 
passing through the code and testing did not reveal 
anything. We began to wonder of there wasn’t another 
possibility. With the extended output precision of the 
software, the coordinates of points across the CERN site 
now ranged up to 10 km with a precision of 0.1 
micrometres or 12 significant figures. This could start to 
approach the limits of the precision maintainable with 
double precision real numbers in calculation intensive 
software, which least squares algorithms processing of 
large data sets certainly are! It was possible that the 
change of matrix representation and associated algorithms 
led us to a different solution due to a different set of 
rounding errors. 

Quadruple precision was the obvious answer, but a 
search of the internet revealed that this was only really a 
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possibility using software emulation. Ironically quad 
precision was already a reality in some FORTRAN 
compilers. One of the best options was an unpublished 
implementation in the Intel compiler. Fortunately CERN 
had access to this compiler, so the modifications were 
made to the code to enable us to switch between double 
precision and quadruple precision at compile time. This 
change probably slows the processing time by a factor of 
2-4 times but this was outweighed by the gains provided 
by the other changes described above. In the end this did 
not provide any significant improvement in the 
discrepancies between the results, but as already 
mentioned the differences between the final results from 
the computations were negligible. In any case we 
shouldn’t need to worry about calculation precision for 
some time! 

Application Output Data Formats 
A number of changes have also been made to the 

format of the data output from LGC. The first change was 
implemented to improve the flexibility in the control of 
the precision of the output results data.  

A number of keywords existed in the FORTRAN 
version to create output for specific applications such as 
the early CLIC studies. However these did not always 
produce a consistent level of precision throughout the 
entire output data file. A new keyword has now been 
implemented to allow the results to be output with a 
precision which can be set to lie anywhere between 
metres to tenths of a micrometre. This is sufficient for 
current projects and installations, but can be easily 
extended in the future if required. 

Typically the output files are presented as text files with 
the data in a tabulated format. This can now also be 
changed to give comma separated variable (CSV) format, 
for easy import into Excel for example. 

Figure 3: PCTOPO interface 

The current user interface for LGC is provided either 
by Geode, or a utility providing access to a number of our 
applications, including LGC, called PCTOPO, see Fig. 3. 
At this time a student project was also launched to create 
a GUI front end for LGC with an emphasis on the 
graphical presentation of the network of measurements 
for a given field operation, see Fig. 4. The work was 
never finalised, but has provided a basis for future work 
in this direction, and has shown the areas where more 
work is still required, such as in the presentation of the 

long narrow measurement networks found in accelerator 
tunnels. 

 
Figure 4: LGC GUI 3D Network View 

NEW FILE FORMAT 
With a new C++ version of LGC now available with an 

implementation of the full functionality available from the 
original FORTRAN code, plus some new functionality 
and the bugs in the original code fixed, it was time to look 
towards extending the program further. 

A list of areas where LGC could be extended had 
existed from the time when the project to re-write it first 
began. A review of this list identified the introduction of 
LTD measurements (or any equivalent instrument such as 
a non-levelled theodolite) as the first priority. Work had 
already begun on the insertion of LTD measurements into 
the SURVEY database, and the obvious next step was to 
be able to export them to an LGC input file where they 
could be processed simultaneously with any other 
measurements. 

The input of the LTD data was obviously going to 
require a modification in the input data format for those 
measurements. Keeping each different type of 
measurement separate, e.g. horizontal angle, zenith 
distance, and spatial distance, required a strong link to be 
created between the corresponding measurements. Rather 
than taking the current input format, and forcing a 
solution for the LTD measurements to conform to it as 
best as possible, it was decided to rework the whole input 
file format. In reality this meant the measurement data 
input format, in the new input file format the calculation 
options and the point data input remain largely 
unchanged.  

New sections have now been added to declare 
instruments and targets, and these sections allow for a 
much more detailed stochastic model such as those found 
in other applications. Standard errors for instrument, or 
target, height or centring can now be introduced, and also 
for other values specific to a given measurement. As 
before the defaults values are applied throughout the file 
if no specific values are specified for a given round of 
measurements or individual measurement. 

Measurements made from a given instrument station 
are now grouped together. For a total station, theodolite, 



 

 

A way to avoid the problem is to introduce a vertical 
plane as an unknown object, see the simplified Figure 6. 

Th
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or the laser tracker the measurements are then grouped by 
a given horizontal orientation, or V0, and then by round 
of measurements. This allows for a much more direct 
control of links between the measurements that were 
made at the same time. It is expected that this will lead to 
a better appreciation of the correlations between related 
measurements during the analysis of the results.  

REVISED OBSERVATION EQUATIONS 
The changes to the input format of the LGC data file 

also allowed for more far reaching changes to a number 
of measurements, principally the offset measurements, 
and the introduction of 3D objects, other than spatial 
points, into the list of unknowns to be determined. 

If we consider the example of the horizontal offsets, 
that are used extensively in most accelerator planimetric 
survey and alignment operations at CERN. As the data is 
presented, these measurements have always been 
characterised by two spatial points (called anchor points), 
a measured point, and the measured offset distance (the 
horizontal distance between the measured point and the 
straight line joining the two anchor points), see Fig. 5. All 
three of these points must be included in the calculation. 

Figure 5: Horizontal Offset Measurement Defined using 
Points 

In reality, for horizontal offsets, the instrument is 
actually placed on a point and the distance to a vertical 
plane, characterised by a stretched wire, is measured. It is 
also becoming more frequent for the wire to be stretched 
between to two tripods whose position is not important. In 
this case the offset from the two anchor points is also 
measured. Prior to the inclusion of these measurements in 
an LGC data file, each measurement linked to a given 
stretched wire installation are reduced to the straight line 
passing through the two anchor points. 

The problem with this pre-processing is that if there is 
an error in the measurement to one of the anchor points, 
all the reduced measurements relying on that anchor point 
measurement will be wrong. It is then necessary to return 
to the original measurements and identify a different 
anchor point. 

e measurements to this plane from the points are all 
processed in the least squares adjustment, and the 
parameters of the plane are included in the list of 
unknown parameters. There will obviously be a change in 
the observation equations depending on which 
representation is chosen. 

Measured distance / offset 

Vertical (e.g. Z-axis) 

Vertical Plane 

Measurement Point 

Figure 6: Horizontal Offset to a Vertical Plane 

In ffset vector form the observation equation for the o
urement defined in terms of three points is give
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where, 
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in Equation 2 is 
th istance to the origin, it is also better to introduce a 
fix point much closer to the area being measured (see 

ܵ
ܺ

= 2D coordinates 
ெ  
஺ܺଵ ஺ܺଶ

 
The observation equation for the offset to a v

(see
ing the actual field measurements, and does not require 

and any specific pre-processing of the measurements. 
This means that measurements can be removed from the 
calculation without any problem. The disadvantage is that 
it does increase the number of unknowns in the 
adjustment. With the computing power available from 
desktop computers today, the increase in the number of 
unknowns should not be a major drawback.  
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. 3). This means that a small rotation of the plane 
should not induce significant changes in this parameter 
and will help the convergence of the least squares 
process. 
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An
d co traints to the least squares adjustment, s

mains 
ctor. Again, this is not a major problem from a 

computational power point of view, but does complicate 
the least squares formulation. 

This same philosophy has been applied to the offset to a 
spatial line and the offset to a vertical line measurements. 
Intuitively in each case a li

troduced as an unknown.  
Further work is still needed to refine the processing of 

these new observation equations. The solutions are 
currently less stable than wo

quire further investigation to understand these 
instabilities and why they were less apparent with the 
original observation equations. Further work is also need 
to refine the decomposition and least squares solution 
methods for these more complicated formulations. 

CONCLUSIONS 
Following many years of intermittent developm

C written in C++ has n
ll of the functionality 

ginal F77. This new version also includes several 
improvements such as: a revised algorithm for the 
processing the observations which is base around a more 
rigorous process for transforming the point coordinates 
between the necessary reference frames; and a sparse 
matrix model exploited in the least squares solution. 

This re-writing of LGC has also resulted in the creation 
of a software library which we have called SurveyLib, 
and which is also now the basis for a couple of other 

-house applications. We are also hopeful that the 
structure of this new application will enable us to 
introduce new concepts and developments into the code 
much more easily than in the F77 program. 

Further developments have now been rapidly applied to 
the new application in order to permit the integration of 
LTD measurements into an adjustment. Th

 towards a change in the format of the input file, and 
encouraged us to simultaneously make a change in a 
number of observation equations. This in turn led to the 
introduction of a couple of simple 3D objects whose 
parameters are included in the list of unknown parameters 
to be determined. These changes have required us to 
evolve the algorithm of the least squares solution. When 
time and resources are available we hope to conclude on 

the best way to manage these new concepts, and finalise 
this latest version too. 

When we began this project the choice of programming 
language was one of the first questions that were 
addressed. The choice 

to account: the current and future support available 
from the CERN IT Department; and the ability of the 
finished application to process large data sets and the 
corresponding least squares matrices as fast as possible.  

Ten years ago it was difficult to find surveyors who had 
experience in writing C++ (or even other object-oriented 
languages such as Java). For those with an interest in

ogramming, and a mathematical background, training 
courses were periodically available at CERN, but not 
always when they were needed. This then meant taking 
time to teach them the language within the survey group. 
In either case the surveyor would not be productive for 
maybe six months, and this was only worthwhile if they 
would be at CERN for more than a year. More recently 
we have been working with computer programming 
students with a strong mathematical background, and 
found teaching them the fundamentals of surveying or 
least squares a more productive process. Finally we are 
now seeing some surveying students with a good 
knowledge of C++. 

There have been times when the difficulties of finding 
people to work on the project, for the reasons outlined 
above, have put in d

ogramming language. Visual Basic seems to be the 
language that most surveyors know, but it would be 
difficult to imagine such a processing intensive 
application written in this language. A similar problem 
exists with Java, which may have fewer hidden dangers 
than C++, but is still perhaps 2 – 10 times slower. C has 
less functionality, and FORTRAN now has very little 
support at CERN. Taking all these factors into account 
the author still believes that C++ was the correct choice. 
The appearance of surveyors with programming skills in 
this language would appear to vindicate that. 

This development has only been possible with the 
contribution of numerous people (students, fellows and 
staff) and the author would like to thank them

lp in reaching the final goal. It was not always easy and 
we all had new things to learn along the way. 
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